Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT The JWST has uncovered a new population of candidate broad-line active galactic nucleus (AGN) emerging in the early Universe, named ‘little red dots’ (LRDs) because of their compactness and red colours at optical wavelengths. LRDs appear to be surprisingly abundant ($${\approx} 10^{-5} \, {\rm cMpc}^{-3}$$) given that their inferred bolometric luminosities largely overlap with those of the ultraviolet (UV)-luminous quasars identified at high z in wide-field spectroscopic surveys. In this work, we investigate how the population of LRDs and/or other UV-obscured AGN relates to the one of unobscured, UV-selected quasars. By comparing their number densities, we infer an extremely large and rapidly evolving obscured:unobscured ratio, ranging from $${\approx} 20{:}1$$ at $$z\approx 4$$ to $${\approx} 2300{:}1$$ at $$z\approx 7$$, and possibly extending out to very high ($${\approx} 10^{47}\, {\rm erg}\, {\rm s}^{-1}$$) bolometric luminosities. This large obscured:unobscured ratio is incompatible with the UV-luminous duty cycle measured for unobscured quasars at $$z\approx 4\!-\!6$$, suggesting that LRDs are too abundant to be hosted by the same haloes as unobscured quasars. This implies that either (a) the bolometric luminosities of LRDs are strongly overestimated or (b) LRDs follow different scaling relations than those of UV-selected quasars, representing a new population of accreting supermassive black holes emerging in the early Universe. A direct comparison between the clustering of LRDs and that of faint UV-selected quasars will ultimately confirm these findings and shed light on key properties of LRDs such as their host mass distribution and duty cycle. We provide a mock analysis for the clustering of LRDs and show that it is feasible with current and upcoming JWST surveys.more » « less
- 
            Context.Submillimeter galaxies (SMGs) constitute a key population of bright star-forming galaxies at high-redshift. These galaxies challenge galaxy formation models, particularly regarding the reproduction of their observed number counts and redshift distributions. Furthermore, although SMGs contribute significantly to the cosmic star formation rate density (SFRD), their precise role remains uncertain. Upcoming surveys, such as the Ultra Deep Survey with the TolTEC camera, are expected to offer valuable insights into SMG properties and their broader impact in the Universe. Aims.Robust modeling of SMGs in a cosmological representative volume is necessary to investigate their nature in preparation for next-generation submillimeter surveys. Here, we test different parametric models for SMGs in large-volume hydrodynamical simulations, assess their contribution to the SFRD, and build expectations for future submillimeter surveys. Methods.We implement and test parametric relations derived from radiative transfer calculations across three cosmological simulation suites: EAGLE, IllustrisTNG, and FLAMINGO. We place particular emphasis on the FLAMINGO simulations due to their large volume and robust statistical sampling of SMGs. Based on the model that best reproduces observational number counts, we forecast submillimeter fluxes within the simulations, analyze the properties of SMGs, and evaluate their evolution over cosmic time. Results.Our results show that the FLAMINGO simulation reproduces the observed redshift distribution and source number counts of SMGs without requiring a top-heavy initial mass function. On the other hand, the EAGLE and IllustrisTNG simulations show a deficit of bright SMGs. We find that SMGs with S850 > 1 mJy contribute up to ∼27% of the cosmic SFRD atz ∼ 2.6 in the FLAMINGO simulation, which is consistent with recent observations. Flux density functions reveal a rise in SMG abundance fromz = 6 toz = 2.5 that is followed by a sharp decline in the number of brighter SMGs fromz = 2.5 toz = 0. Leveraging the SMG population in FLAMINGO, we forecast that the TolTEC UDS will detect ∼80 000 sources over 0.8 deg2at 1.1 mm (at the 4σdetection limit), capturing about 50% of the cosmic SFRD atz ∼ 2.5.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Abstract The shallow potential wells of star-forming dwarf galaxies make their surrounding circumgalactic and intergalactic medium (CGM/IGM) sensitive laboratories for studying the inflows and outflows thought to regulate galaxy evolution. We present new absorption-line measurements in quasar sight lines, probing within projected distances of <300 kpc from 91 star-forming field dwarf galaxies with a median stellar mass of at 0.077 <z< 0.73, from the Cosmic Ultraviolet Baryon Survey (CUBS). In this redshift range, the CUBS quasar spectra cover a suite of transitions including Hi, low, and intermediate metal ions (e.g., Cii, Siii, Ciii, and Siiii), and highly ionized Ovi. This CUBS-Dwarfs survey enables constraints with samples nine times larger than past dwarf CGM/IGM studies with similar ionic coverage. We find that low and intermediate ionization metal absorption is rare around dwarf galaxies, consistent with previous surveys of local dwarfs. In contrast, highly ionized Oviis commonly observed in sight lines that pass within the virial radius of a dwarf, and Ovidetection rates are nonnegligible at projected distances of 1−2× the virial radius. Based on these measurements, we estimate that the Ovi-bearing phase of the CGM/IGM accounts for a dominant share of the metal budget of dwarf galaxies. The absorption kinematics suggest that a relatively modest fraction of the Ovi-bearing gas is formally unbound. Together, these results imply that low-mass systems atz≲ 1 effectively retain a substantial fraction of their metals within the nearby CGM and IGM.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            ABSTRACT Recent observations from the EIGER JWST program have measured for the first time the quasar–galaxy cross-correlation function at $$z\approx 6$$. The autocorrelation function of faint $$z\approx 6$$ quasars was also recently estimated. These measurements provide key insights into the properties of quasars and galaxies at high redshift and their relation with the host dark matter haloes. In this work, we interpret these data building upon an empirical quasar population model that has been applied successfully to quasar clustering and demographic measurements at $$z\approx 2\!-\!4$$. We use a new, large-volume N-body simulation with more than a trillion particles, FLAMINGO-10k, to model quasars and galaxies simultaneously. We successfully reproduce observations of $$z\approx 6$$ quasars and galaxies (i.e. their clustering properties and luminosity functions), and infer key quantities such as their luminosity–halo mass relation, the mass function of their host haloes, and their duty cycle/occupation fraction. Our key findings are (i) quasars reside on average in $$\approx 10^{12.5}\, {\rm M}_{\odot }$$ haloes (corresponding to $$\approx 5\sigma$$ fluctuations in the initial conditions of the linear density field), but the distribution of host halo masses is quite broad; (ii) the duty cycle of (UV-bright) quasar activity is relatively low ($$\approx 1~{{\ \rm per\ cent}}$$); (iii) galaxies (that are bright in [O iii]) live in much smaller haloes ($$\approx 10^{10.9}\, {\rm M}_{\odot }$$) and have a larger duty cycle (occupation fraction) of $$\approx 13~{{\ \rm per\ cent}}$$. Finally, we focus on the inferred properties of quasars and present a homogeneous analysis of their evolution with redshift. The picture that emerges reveals a strong evolution of the host halo mass and duty cycle of quasars at $$z\approx 2\!-\!6$$, and calls for new investigations of the role of quasar activity across cosmic time.more » « less
- 
            Abstract This paper presents a newly established sample of 103 unique galaxies or galaxy groups at 0.4 ≲z≲ 0.7 from the Cosmic Ultraviolet Baryon Survey (CUBS) for studying the warm-hot circumgalactic medium (CGM) probed by both Oviand Neviiiabsorption. The galaxies and associated neighbors are identified at <1 physical Mpc from the sightlines toward 15 CUBS QSOs atzQSO≳ 0.8. A total of 30 galaxies or galaxy groups exhibit associated Oviλλ1031, 1037 doublet absorption within a line-of-sight velocity interval of ±250 km s−1, while the rest show no trace of Ovito a detection limit of . Meanwhile, only five galaxies or galaxy groups exhibit the Neviiiλλ770, 780 doublet absorption, down to a limiting column density of . These Ovi- and Neviii-bearing halos reside in different galaxy environments with stellar masses ranging from to ≈11.5. The warm-hot CGM around galaxies of different stellar masses and star formation rates exhibits different spatial profiles and kinematics. In particular, star-forming galaxies with show a significant concentration of metal-enriched warm-hot CGM within the virial radius, while massive quiescent galaxies exhibit flatter radial profiles of both column densities and covering fractions. In addition, the velocity dispersion of Oviabsorption is broad withσυ> 40 km s−1for galaxies of within the virial radius, suggesting a more dynamic warm-hot halo around these galaxies. Finally, the warm-hot CGM probed by Oviand Neviiiis suggested to be the dominant phase in sub-L* galaxies with based on their high ionization fractions in the CGM.more » « less
- 
            Abstract We present rest-frame optical spectra from Keck/MOSFIRE and Keck/NIRES of 16 candidate ultramassive galaxies targeted as part of the Massive Ancient Galaxies atz> 3 Near-Infrared Survey (MAGAZ3NE). These candidates were selected to have photometric redshifts 3 ≲zphot<4, photometric stellar masses > 11.7, and well-sampled photometric spectral energy distributions (SEDs) from the UltraVISTA and VIDEO surveys. In contrast to previous spectroscopic observations of blue star-forming and poststarburst ultramassive galaxies, candidates in this sample have very red SEDs implying significant dust attenuation, old stellar ages, and/or active galactic nuclei (AGN). Of these galaxies, eight are revealed to be heavily dust-obscured 2.0 <z< 2.7 galaxies with strong emission lines, some showing broad features indicative of AGN, three are Type I AGN hosts atz> 3, one is az∼ 1.2 dusty galaxy, and four galaxies do not have a confirmed spectroscopic redshift. In fact, none of the sample has ∣zspec−zphot∣ < 0.5, suggesting difficulties for photometric redshift programs in fitting similarly red SEDs. The prevalence of these red interloper galaxies suggests that the number densities of high-mass galaxies are overestimated atz≳ 3 in large photometric surveys, helping to resolve the “impossibly early galaxy problem” and leading to much better agreement with cosmological galaxy simulations. A more complete spectroscopic survey of ultramassive galaxies is required to pin down the uncertainties on their number densities in the early Universe.more » « less
- 
            Abstract The high incidence rate of the O vi λλ 1032, 1038 absorption around low-redshift, ∼ L * star-forming galaxies has generated interest in studies of the circumgalactic medium. We use the high-resolution EAGLE cosmological simulation to analyze the circumgalactic O vi gas around z ≈ 0.3 star-forming galaxies. Motivated by the limitation that observations do not reveal where the gas lies along the line of sight, we compare the O vi measurements produced by gas within fixed distances around galaxies and by gas selected using line-of-sight velocity cuts commonly adopted by observers. We show that gas selected by a velocity cut of ±300 km s −1 or ±500 km s −1 produces a higher O vi column density, a flatter column density profile, and a higher covering fraction compared to gas within 1, 2, or 3 times the virial radius ( r vir ) of galaxies. The discrepancy increases with impact parameter and worsens for lower-mass galaxies. For example, compared to the gas within 2 r vir , identifying the gas using velocity cuts of 200–500 km s −1 increases the O vi column density by 0.2 dex (0.1 dex) at 1 r vir to over 0.75 dex (0.7 dex) at ≈ 2 r vir for galaxies with stellar masses of 10 9 –10 9.5 M ⊙ (10 10 –10 10.5 M ⊙ ). We furthermore estimate that excluding O vi outside r vir decreases the circumgalactic oxygen mass measured by Tumlinson et al. (2011) by over 50%. Our results demonstrate that gas at large line-of-sight separations but selected by conventional velocity windows has significant effects on the O vi measurements and may not be observationally distinguishable from gas near the galaxies.more » « less
- 
            ABSTRACT Interstellar chemistry is important for galaxy formation, as it determines the rate at which gas can cool, and enables us to make predictions for observable spectroscopic lines from ions and molecules. We explore two central aspects of modelling the chemistry of the interstellar medium (ISM): (1) the effects of local stellar radiation, which ionizes and heats the gas, and (2) the depletion of metals on to dust grains, which reduces the abundance of metals in the gas phase. We run high-resolution (400 M⊙ per baryonic particle) simulations of isolated disc galaxies, from dwarfs to Milky Way-mass, using the fire galaxy formation models together with the chimes non-equilibrium chemistry and cooling module. In our fiducial model, we couple the chemistry to the stellar fluxes calculated from star particles using an approximate radiative transfer scheme; and we implement an empirical density-dependent prescription for metal depletion. For comparison, we also run simulations with a spatially uniform radiation field, and without metal depletion. Our fiducial model broadly reproduces observed trends in H i and H2 mass with stellar mass, and in line luminosity versus star formation rate for [C ii]$$_{158 \rm {\mu m}}$$, [O i]$$_{63 \rm {\mu m}}$$, [O iii]$$_{88 \rm {\mu m}}$$, [N ii]$$_{122 \rm {\mu m}}$$, and H α6563Å. Our simulations with a uniform radiation field predict fainter luminosities, by up to an order of magnitude for [O iii]$$_{88 \rm {\mu m}}$$ and H α6563Å, while ignoring metal depletion increases the luminosity of carbon and oxygen lines by a factor ≈ 2. However, the overall evolution of the galaxy is not strongly affected by local stellar fluxes or metal depletion, except in dwarf galaxies where the inclusion of local fluxes leads to weaker outflows and hence higher gas fractions.more » « less
- 
            ABSTRACT This paper presents a newly established sample of 19 unique galaxies and galaxy groups at redshift z = 0.89–1.21 in six QSO fields from the Cosmic Ultraviolet Baryon Survey (CUBS), designated as the CUBSz1 sample. In this sample, nine galaxies or galaxy groups show absorption features, while the other 10 systems exhibit 2σ upper limits of $$\log N (\rm{He\,{\small I}})/\mbox{$${\rm cm^{-2}}$$}\lesssim 13.5$$ and $$\log N (\rm{O\,{\small V}})/\mbox{$${\rm cm^{-2}}$$}\lesssim 13.3$$. Environmental properties of the galaxies, including galaxy overdensities, the total stellar mass and gravitational potential summed over all neighbours, and the presence of local ionizing sources, are found to have a significant impact on the observed CGM absorption properties. Specifically, massive galaxies and galaxies in overdense regions exhibit a higher rate of incidence of absorption. The CGM absorption properties in galaxy groups appear to be driven by the galaxy closest to the QSO sightline, rather than by the most massive galaxy or by mass-weighted properties. We introduce a total projected gravitational potential ψ, defined as −ψ/G = ∑Mhalo/dproj summed over all group members, to characterize the galaxy environment. This projected gravitational potential correlates linearly with the maximum density detected in each sightline (i.e. a power-law slope of $$0.95_{-0.14}^{+0.15}$$), consistent with higher pressure gas being confined in deeper gravitational potential wells. In addition, we find that the radial profile of cool gas density exhibits a decline from the inner regions to the outskirts, and the amplitude is consistent with the cool gas being in pressure balance with the hot halo. Finally, we note that the ionizing flux from nearby galaxies can elevate the N(H i)/N(He i) ratio, which provides a unique diagnostic of possible local sources contributing to the ionizing radiation field.more » « less
- 
            Abstract This paper reports the first measurement of the relationship between turbulent velocity and cloud size in the diffuse circumgalactic medium (CGM) in typical galaxy halos at redshiftz≈ 0.4–1. Through spectrally resolved absorption profiles of a suite of ionic transitions paired with careful ionization analyses of individual components, cool clumps of size as small aslcl∼ 1 pc and density lower thannH= 10−3cm−3are identified in galaxy halos. In addition, comparing the line widths between different elements for kinematically matched components provides robust empirical constraints on the thermal temperatureTand the nonthermal motionsbNT, independent of the ionization models. On average,bNTis found to increase withlclfollowing over three decades in spatial scale fromlcl≈ 1 pc tolcl≈ 1 kpc. Attributing the observedbNTto turbulent motions internal to the clumps, the best-fitbNT–lclrelation shows that the turbulence is consistent with Kolmogorov at <1 kpc with a roughly constant energy transfer rate per unit mass ofϵ≈ 0.003 cm2s−3and a dissipation timescale of ≲100 Myr. No significant difference is found between massive quiescent and star-forming halos in the sample on scales less than 1 kpc. While the inferredϵis comparable to what is found in Civabsorbers at high redshift, it is considerably smaller than observed in star-forming gas or in extended line-emitting nebulae around distant quasars. A brief discussion of possible sources to drive the observed turbulence in the cool CGM is presented.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
